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Supplemental Text 
 
MRI Hardware 

During pilot testing we compared the Siemens 32-channel (ch) head coil with the 64-ch 
head/neck coil. We found no compelling reasons to switch from the 32-ch coil (used for HCP-
YA) to the 64-ch coil in terms of SNR across the whole brain. This was not surprising given that 
the 64-ch coil has a slightly larger form factor and only a few more coil elements specific to the 
‘head’ portion of the coil (40 head elements; 24 neck elements). Thus, we continued using the 
32-ch head coil as the primary HCP-D/A coil. 

We are currently investigating a pediatric 32-ch head coil developed by Ceresensa 
[http://www.ceresensa.com] for scanning of 5-7 year old participants. This coil has a smaller 
inner diameter than the Siemens 32-ch coil and a hinged top (anterior) compartment, yielding 
an open design above the participant’s eyes and face. Given budget constraints and for 
efficiency, we would use two Ceresensa coils (at the Washington University and UCLA sites) to 
acquire all the data from 5-7 year olds. See Supplemental Figure 1 for pilot data from a 
preliminary version of this coil. Further testing of a modified version of this coil is pending. 
While there are drawbacks to using two different head coils across the study sample, this 
approach may be preferable for dealing with the challenges posed by the smaller head and 
neck length of young children (i.e., getting their heads centered comfortably in the ‘sweet spot’ 
of the coil, and ensuring unobstructed viewing of the mounted mirror and visual stimuli). 
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Supplemental Figures 
 
 

 
 
Supplemental Figure 1. Scatterplots of temporal SNR (tSNR) of surface vertices (left panel) and 
subcortical voxels (right panel) in a preliminary version of the Ceresensa 32-channel (ch) pediatric head 
coil versus the Siemens 32-ch adult head coil, colored according to the relative density of the points 
(black = low density; light yellow = highest density). A single adult subject with a small head completed a 
resting state fMRI scan (488 frames, 6.5 min, ‘AP’ phase encoding polarity) in both head coils. The scans 
were processed with the HCP ‘minimal-preprocessing’ pipeline to yield a 2 mm standard grayordinate 
(CIFTI) representation (59412 surface vertices and 31870 ‘subcortical’ voxels, including cerebellum), 
from which tSNR for each grayordinate was computed (mean signal over time divided by the standard 
deviation over time). The subject (female, 38 years old) had minimal movement during both scans. Note 
the differing ranges of the axes between the two panels. The red diagonal line is the line of identity. 
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Supplemental Figure 2. Additional measures from the evaluation of multiband multi-echo (MB-ME) pilot data. The 
acquisition/processing variants and figure layout are the same as Figure 2 in the main text (with non-FIX’ed data in 
top row, and FIX’ed data in bottom row) except the measures are now the sum and mean mixture-model-corrected 
(MMC) Z-stat derived from either a common spatial mask (defined for each resting-state network (RSN) as the 
grayordinates with value > 0.5 in the RSN templates used for the dual-regression) (panels A,B,E,F) or from the top 
1% of MMC Z-stat values (C,D,G,H). The average number of grayordinates in the common spatial mask (across the 
100 RSN templates) was 423 (std=294; out of 91282 grayordinates). The choice of 1% as the ‘threshold’ for the 
other alternative quantification was based on the fact that 913 grayordinates (1% of 91282) is similar to the 
approximately 600-1200 grayordinates selected when we used the MMC equal probability threshold between 
activation and noise (see Fig. 2A and 2F in main text). Note that the sum and mean when using the top 1% to select 
the grayordinates are scaled replicas of each other (C vs. D, and G vs. H), but both are provided for completeness. 
(The sum and mean are not strictly scaled replicas when using Template > 0.5 to select the grayordinates because 
that criterion selects differing numbers of grayordinates across the 100 RSN templates). By using a common spatial 
mask and the top 1% of grayordinates the ensuing results are independent of the differences between 
acquisition/processing variants in the MMC equal probability threshold (Fig. 2E and 2J). The results of these 
measures are broadly consistent with the results in Figure 2 in that the highest values are obtained for the MB8-SE 
data. 
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Supplemental Figure 3. Violin plots (smoothed histograms) of the contrast-to-noise (CNR) by b-value from 18-19 
subjects of the dMRI data collected with the HCP-YA, HCP-D/A, and UK Biobank protocols (mean age of 28, 18, 
and 61 years, respectively). Raw CNR and effective CNR were computed as defined in Figure 3 (main text) except 
the ROI for the computation was over the whole white matter. The Biobank protocol has the largest raw CNR of the 
compared protocols due to its larger voxel volume (137% larger than HCP-D/A). The HCP-D/A dMRI protocol has a 
favorable, albeit slightly lower, effective CNR compared to the HCP-YA protocol, consistent with the fact that the 
HCP-D/A protocol collects approximately the same number of volumes per shell (although HCP-YA collected 3 
shells, rather than 2 for HCP-D/A), but has a 73% larger voxel volume compared to HCP-YA (and thus is “penalized” 
relative to HCP-YA by the normalization by voxel volume). HCP-YA data were collected on the Siemens 3T 
customized ‘Connectom’ scanner (100 mT/m gradients); HCP-D/A data on a Siemens 3T Prisma (80 mT/m 
gradients); Biobank on a Siemens 3T Skyra (45 mT/m gradients). All protocols used a partial Fourier factor of 6/8, 
and no in-plane (phase) acceleration. 
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Supplemental Figure 4. Comparison between 3 different dMRI protocols in terms of CNR, fiber 
orientation uncertainty, and detection of 2- and 3-way fiber crossings. See Figure 3 (main text) for details 
of the measures and analysis. Relative to Figure 3, data from 19 participants in the UK Biobank project 
(mean age 61 years) have been added. The Biobank dMRI protocol uses larger (2.0 mm isotropic) 
voxels, which explains its considerably higher values of raw CNR in both the corpus callosum (A) and 
centrum semiovale (C,E). However, because of its considerably shorter scan duration, the effective CNR 
of the Biobank dMRI protocol is lower than that of the HCP-YA and HCP-D/A dMRI protocols (B,D,F; 
see also Supplemental Figure 3). The regression line between effective CNR and uncertainty computed 
using the data from all 3 protocols (B) is very similar to that obtained using the data from just the HCP-
YA and HCP-D/A protocols (i.e., compare to regression line in Fig. 3B), and visually the regression line 
for effective CNR and uncertainty appears to fit the data from each protocol equally well (e.g., roughly 
equal number of points above and below the regression line for each protocol). However, this is not the 
case for the inclusion of the Biobank data into the regression between effective CNR and the percentage 
of 2-way (D) and 3-way (F) crossings (i.e., compare to the regression lines in Fig. 3D and 3F), indicating 
that effects related to age differences may be impacting the relationship or simply that as protocol 
differences increase, the simplistic adjustments involved in “effective CNR” are not sufficient. 
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Supplemental Table 1. ‘Minimal preprocessing’ procedures for publicly released data 

PIPELINE GOALS/OUTPUTS 
STRUCTURAL PRIMARY INPUTS:  1) NIFTI format T1w volume; 2) NIFTI format T2w volume 

PreFreeSurfer 1) Produce an undistorted “native” structural volume space for each subject. This 
includes removing gradient-nonlinearity-induced distortions and readout direction 
distortions. 
2) Align the T1w and T2w 
3) Perform a correction of the receive-coil bias field 
4) Register the subject’s native structural volume space to MNI space using FSL’s 
FNIRT 

FreeSurfer 1) Segment the volume into predefined structures 
2) Derive the white and pial cortical surfaces 

PostFreeSurfer 1) Produce all the volume and surface files necessary for viewing data in Connectome 
Workbench 
2) Perform ‘MSMSulc’ surface registrationa to the Conte69 surface template 
3) Downsample registered surfaces for connectivity analysis 
4) Create final brain mask 
5) Create myelin maps 

FUNCTIONAL PRIMARY INPUTS:  1) Resting state and task-based functional scans (fMRI), 2) Output from 
Structural Preprocessing 

fMRIVolume  1) Remove spatial distortions 
2) Realign volumes to correct for subject motion 
3) Register fMRI data to structural data 
4) Reduce the receive-coil bias field 
5) Normalize data to global mean 
6) Mask data with the final brain mask 

fMRISurface 1) Bring the volumetric time series into the CIFTI grayordinates standard space with a 
small amount (2 mm full-width-half-max) of appropriate spatial smoothing (surface 
smoothing for the vertices; parcel constrained smoothing for subcortical voxels) 
2) Result is a standard set of grayordinates in every subject with 2 mm average surface 
vertex and subcortical volume voxel spacing 

DIFFUSION PRIMARY INPUTS:  1) Diffusion scans (dMRI), 2) Output from Structural Preprocessing 

Diffusion 1) Normalize the image intensity across runs so that there is a consistent average b0 
intensity in each run 
2) Remove EPI distortions 
3) Remove eddy-current-induced distortions 
4) Reduce subject motion distortions 
5) Remove gradient-nonlinearity distortions 
6) Register to structural data 
7) Mask data with the final brain mask 

 
a ‘MSMSulc’ registration uses FreeSurfer’s “sulc” map with the Multimodal Surface Matching (MSM) 
algorithm to derive a surface alignment based on cortical folding, but with less distortion than the native 
spherical registration within FreeSurfer {Robinson, 2014 #3318;Robinson, 2018 #3384}. 
 
  



 
Supplement for Harms et al. 

8 

References 
  
Robinson, E.C., Garcia, K., Glasser, M.F., Chen, Z., Coalson, T.S., Makropoulos, A., Bozek, J., 
Wright, R., Schuh, A., Webster, M., Hutter, J., Price, A., Cordero Grande, L., Hughes, E., Tusor, 
N., Bayly, P.V., Van Essen, D.C., Smith, S.M., Edwards, A.D., Hajnal, J., Jenkinson, M., 
Glocker, B., Rueckert, D., 2018. Multimodal surface matching with higher-order smoothness 
constraints. Neuroimage 167, 453-465. 
Robinson, E.C., Jbabdi, S., Glasser, M.F., Andersson, J., Burgess, G.C., Harms, M.P., Smith, 
S.M., Van Essen, D.C., Jenkinson, M., 2014. MSM: a new flexible framework for Multimodal 
Surface Matching. Neuroimage 100, 414-426. 
 


