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Hauser and colleagues’ (2019) target article illus-
trates the promise of applying a computational level
of analysis to reveal the precise mechanisms that
can explain the precipitous rise in psychopathology
during the adolescent years. There is a broadly
emerging view that computational approaches will
accelerate progress in understanding psychiatric
illness. To truly consider psychiatric illness as neu-
rodevelopmental in nature, it is crucial to view the
study of psychopathology’s symptoms, mechanisms,
and course through a developmental lens. Hauser
and colleagues’ optimism is welcome. By providing a
road map with concise, concrete examples of the
processes illuminated by computational psychiatry,
Hauser, Will, Dubois, and Dolan’s (2019) review
creates a framework to broaden research toward the
crucial, unanswered questions about how psy-
chopathology emerges.

We too are eager for the developmental research to
reap the benefits of computational approaches.
Although some progress has been made in recent
years, the use of computational approaches to reveal
the algorithmic changes in basic (nonclinical) psy-
chological development has proven challenging for
both pragmatic and deep theoretical reasons. We
thus believe it is important to consider, on balance,
the promise and the challenges of engaging in
algorithmic-level examination of developing risk for
psychopathology. Here we suggest that work toward
this worthy goal may, at times, require intermediate
foundation-building in related domains that place
the study of development at their center.

Development is both quantitative and
qualitative
First, as described in the target article, develop-
mental computational psychiatry will need to be
grounded in developmentally informed tasks and
computational models. These tools will need to be
sensitive to the underlying cognitive operations

used by individuals of all ages of interest. Many
studies attempt to describe the developmental
changes in cognition at the algorithmic level by
benchmarking on well-described adult models. For
example, van den Bos, Cohen, Kahnt, and Crone
(2012) show that child, adolescent, and adult
learning behavior can be described equivalently
well to a standard reinforcement learning model
with separate parameters for positive and negative
learning rates. They identify a single parameter that
explains age-related differences in learning: the
learning rate for negative feedback, which is ele-
vated in children.

However, developmental research has highlighted
that it is not always valid to assume the same
algorithms in adult models will characterize a devel-
opmental population, just with different weights.
Palminteri and colleagues, for example, found that
adolescent reinforcement learning was better
explained by the simplest model tested, whereas
adult reinforcement learning more closely matched a
more complex model that incorporated additional
sources of information, including counterfactual
outcomes and other contextual factors that did not
influence younger individuals’ choices (Palminteri,
Kilford, Coricelli, & Blakemore, 2016). In another
study, whereas inaccurate instructions biased adult
estimates of stimulus value in a reward learning
task, children avoided this bias by relying more
heavily on their own experiences (Decker, Lourenco,
Doll, & Hartley, 2015) and this difference was
reflected in distinct best-fitting models for these age
groups. Finally, there is evidence that decision-
making strategies vary qualitatively between
younger and older adults as well; older adults appear
to rely more heavily on simpler, heuristic-based
decision strategies, whereas younger adults rely
more heavily on more complex model-based deci-
sion-making (Worthy, Cooper, Byrne, Gorlick, &
Maddox, 2014). Developmental computational psy-
chiatry research will therefore need to avoid the
pitfall of making assumptions that child and adoles-
cent computational processes vary from adults only
in degree and not in kind.*Shared first author contribution, listed alphabetically.
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Testing developmental differences
Research designed to identify developmental differ-
ences in a behavior, model, symptom, or neurode-
velopmental pattern requires careful consideration
of the group-analytical framework used to test for
these changes. Much computational-based research
identifies best-fitting models of a group, or conducts
between-group comparisons by directly comparing
different subsets of an overall sample (i.e. case-
control approaches). One common convention in
early computational work has been to compare
groupings based on the developmental phase (i.e.
children vs. adolescents; adolescents vs. adults) and
setting the boundaries between these groups in a
relatively arbitrary fashion. We caution against this
overly simple perspective, which tends to lump large
swaths of individuals who, in actuality, are not
comparable (i.e. a 13-year old and a 17-year old
occupy quite distinct developmental stages, yet are
frequently combined into an “adolescent” group). In
our own work, we have used statistical approaches
that treat age as a continuous variable to identify
behavioral inflection points within the adolescent
years that would not have been observable using the
semi-arbitrary groupings just described (Rodman,
Powers, & Somerville, 2017).

The need to consider development continuously is
further reinforced in large-scale research that seeks
to define the “growth curves” for different neurode-
velopmental processes. A variety of metrics such as
whole brain resting state connectivity, cortical vol-
ume, and behavioral markers of brain function such
as self-conscious emotion (Rodman et al., 2017)
have underscored that age-related change is often
not a linear process (see Casey, 2015). Brain devel-
opment is marked by inflection points, plateaus, and
various other nonlinearities that render arbitrary
groupings or simple linear fits insufficient to capture
its complexity. A key challenge for the developmental
computational psychiatry research community will
be to represent these complex patterns of change
within their analytic frameworks.

Development beyond age
Finally, Hauser and colleagues describe the need to
target neurodevelopmentally grounded mechanisms
of dysfunction for key psychiatric symptoms. As
such, a foundational understanding of human brain
development is crucial for pointing to the key
processes and targets for developmental computa-
tional psychiatry. While the field of developmental
cognitive neuroscience has exploded in recent years,
the field is still working toward a comprehensive
account of brain development. This is, in part,
because development itself is a complex, multideter-
mined process that reflects the influences of mech-
anisms including (but not limited to) age, key
experiences, and pubertal hormone changes.

When examining neurodevelopmental change
across development, the state of brain maturation –
both behaviorally and biologically – cannot neces-
sarily be determined by age alone. Prior studies have
shown that pubertal stages and hormone levels
relate to differences in cortical and subcortical
volumes, as well as both structural and functional
connectivity and white matter tract maturation. For
example, Goddings et al. (2014) investigated
changes in subcortical volume in a longitudinal
sample and found that changes in amygdala, hip-
pocampal, and putamen volumes were better
explained by a model that included both age and
pubertal development indices than age alone. Klap-
wijk et al. (2013) showed that during social informa-
tion processing in girls, increased functional
connectivity between the dorsomedial prefrontal
cortex and the right temporo-parietal junction was
independent of age but instead explained by the
girls’ pubertal stage. Asato, Terwilliger, Woo, and
Luna (2010) similarly showed that structural white
matter tracts do not asymptote in their structural
change until the postpubertal stage, regardless of
participant age. It is therefore important that
research moves beyond considering simple age-
related changes to incorporate the influence of other
developmental processes, such as puberty, on cog-
nitive development. The relevance of this issue to
computational cognitive development was under-
scored recently by Boehme et al. (2017), who showed
that contextual model-based learning was associ-
ated with more advanced pubertal development,
above and beyond the influence of age. Thus, if the
field hopes to utilize computational models to iden-
tify deviations in the development of cognitive pro-
cesses, further work to elucidate how basic factors
such as hormones and puberty interact with brain
development is crucial.

In this commentary, we have underscored several
ways in which incorporating a developmental frame-
work into existing research areas is more complex
than simply comparing different age groups. How
can researchers traverse these challenges in their
research? There is an increasing recognition that
very large samples are needed to simultaneously
characterize the complex mechanisms of neurode-
velopment. This is reflected in large-scale invest-
ments including the Adolescent Brain and Cognitive
Development study and Human Connectome Project
in Development, which due to their size and scope,
hold the potential to represent neurodevelopment at
an appropriate level of complexity. Future computa-
tionally rooted work may benefit from following the
lead from these studies by testing large samples,
acquiring multiple indices of developmental stage
beyond age, and structuring analytic plans to iden-
tify nonlinear patterns of change. Even studies on a
smaller scale can be “developmentally informed” at
the study design phase, by carefully targeting an age
range of interest based on prior research and
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developmental theory, considering collateral mea-
sures of development beyond mere age, and planning
to evaluate data with continuous statistics.

Here we have highlighted some of the considera-
tions aimed to provoke thinking of how developmen-
tal computational psychiatry can progress in a way
that is maximally developmentally informed. With
these factors in mind, we share optimism that com-
putational modeling will propel discoveries revealing
why psychiatric illness emerges during adolescence.
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