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A B S T R A C T

Diffusion MRI tractography produces massive sets of streamlines that need to be clustered into anatomically
meaningful white-matter bundles. Conventional clustering techniques group streamlines based on their proximity
in Euclidean space. We have developed AnatomiCuts, an unsupervised method for clustering tractography
streamlines based on their neighboring anatomical structures, rather than their coordinates in Euclidean space. In
this work, we show that the anatomical similarity metric used in AnatomiCuts can be extended to find corre-
sponding clusters across subjects and across hemispheres, without inter-subject or inter-hemispheric registration.
Our proposed approach enables group-wise tract cluster analysis, as well as studies of hemispheric asymmetry. We
evaluate our approach on data from the pilot MGH-Harvard-USC Lifespan Human Connectome project, showing
improved correspondence in tract clusters across 184 subjects aged 8–90. Our method shows up to 38%
improvement in the overlap of corresponding clusters when comparing subjects with large age differences. The
techniques presented here do not require registration to a template and can thus be applied to populations with
large inter-subject variability, e.g., due to brain development, aging, or neurological disorders.
1. Introduction (Paus, 1999; Sullivan and Pfefferbaum, 2006; Tamnes et al., 2010; Taki
The human brain undergoes structural changes from birth to adult-
hood (Giedd et al., 1999; Sowell et al., 1999; Zuo et al., 2017). Under-
standing and characterizing typical brain development, maturation, and
aging is crucial for early detection of neurological diseases (Dinstein
et al., 2011; Mahone et al., 2011; Peters and Karlsgodt, 2015) and to
inform treatment and intervention approaches (Lindenberger, 2014; Raz
and Rodrigue, 2006).

Postmortem studies have found age-related differences in various
morphological aspects of the brain, such as size, weight, expansion of
cerebral ventricles, axon diameter, and myelin sheath thickness (Benes,
1989, 1994). MRI provides in-vivo insights into morphological changes
during the lifespan, such as in gray and white matter (WM) volumes
ess).
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et al., 2012). Changes in connectivity as measured by functional MRI
(fMRI) have also been demonstrated during normal development. Young
populations appear to have more efficient networks (Betzel et al., 2014),
while aging increases local segregation and thus requires interaction
between networks (Chan et al., 2014; Fair et al., 2009; Reuter-Lorenz,
2002; Tsang et al., 2017). Although such macrostructural functional
network changes have been shown, it is still unclear whether these are
accompanied by WM microstructural alterations (Baum et al., 2017;
Betzel et al., 2014; Tsang et al., 2017).

White matter undergoes conspicuous growth during the early years of
life and continues to develop at a slower pace into adulthood (Lebel et al.,
2017; Paus, 1999). Diffusion MRI (dMRI) provides indirect measure-
ments of the microstructural changes in WM. Neurodevelopmental
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studies have used diffusion tensor imaging (DTI) (Basser et al., 1994) to
analyze changes in fractional anisotropy, mean, radial, and axial diffu-
sivity, which are presumed to be markers of myelination, axonal density
and coherence (Betzel et al., 2014; Lebel et al., 2008; Sullivan and
Pfefferbaum, 2006; Tsang et al., 2017). Studies show that diffusion
anisotropy, which may be a marker of coherence or myelination, in-
creases in several WM bundles until young adulthood, reaching a peak
during adulthood, before decreasing with age. More recent studies
investigated age-related changes in other dMRI-based microstructural
measures, which attempt to distinguish among the various factors that
contribute to diffusion anisotropy, such as measures from diffusion
kurtosis imaging (Grinberg et al., 2017; Paydar et al., 2013) or neurite
orientation, dispersion and density imaging (Chang et al., 2015; Genc
et al., 2017; Kodiweera et al., 2016).

White matter changes through the lifespan are non-linear and their
rates differ between bundles. For example, maturation in callosal and
projection pathways appear to be mostly complete by the end of
adolescence, while maturation in certain fronto-temporal association
pathways continues into the twenties. The most commonly used models
for lifespan trajectories of WM microstructural measures are linear
(Kodiweera et al., 2016; Sullivan and Pfefferbaum, 2006), quadratic
(Betzel et al., 2014) and exponential (Lebel et al., 2008; Paydar et al.,
2013; Tamnes et al., 2010). However, these models are not necessarily
linked to any particular biological process and their accuracy may
depend on the age range and target WM bundle (Lebel et al., 2017).

The study of WM development relies on the delineation of anatomi-
cally meaningful bundles. Most lifespan studies of WM microstructure to
date have focused on a small set of predefined WM pathways. The ma-
jority did not use tractography to delineate these tracts, instead resorting
to region of interest (ROI) volumes that were defined manually in each
individual (Lebel et al., 2008; Paydar et al., 2013; Sullivan et al., 2001),
obtained by growing an individual cortical parcellation into the WM
(Tamnes et al., 2010), or mapped to the individual from an atlas (Chang
et al., 2015; Genc et al., 2017; Grinberg et al., 2017; Kodiweera et al.,
2016; Pohl et al., 2016; Tamnes et al., 2010). Alternatively, some studies
performed tractography in individuals and used ROIs from an atlas to
define tracts of interest (Clayden et al., 2012; Lebel et al., 2008, 2012).
Any approach that relies on ROIs from an atlas requires accurate align-
ment of each individual to the atlas template space, which can be chal-
lenging for populations with large age ranges or other sources of
morphological variability. Using priors on the anatomical neighborhood
of the tracts of interest is an alternative approach that does not require
perfect alignment in template space and that can be readily applied to
longitudinal studies of age-related WM change (Fjell et al., 2016, 2017;
Storsve et al., 2016).

Here we focus on the problem of performing exploratory, data-driven
analysis of whole-brain tractography data, rather that analyzing pre-
defined tracts of interest. This can be done by applying unsupervised
clustering to the whole-brain tractography streamlines of each individual
and then establishing correspondence between the clusters of different
individuals. A multitude of tract clustering algorithms exist in the liter-
ature. When it comes to across-subject analysis of clusters, some follow a
supervised approach, i.e., require input from experts to define a set of
tracts of interest and constrain the analysis to clusters that match those
tracts (Garyfallidis et al., 2018; Jin et al., 2014; Guevara et al., 2012;
O’Donnell and Westin, 2007; Ros et al., 2013; Zhang et al., 2018; Ziyan
et al., 2009). Purely unsupervised approaches usually register all subjects
to a common template space and match clusters across subjects based on
their Euclidean distance in that space (Guevara et al., 2012; Ros et al.,
2013; Visser et al., 2011; Wang et al., 2011; Ziyan et al., 2009). Unsu-
pervised approaches that do not require inter-subject registration rely
either on shape descriptors of the clusters (Zhang et al., 2014) or on the
anatomical regions that the clusters terminate in. The termination re-
gions may be used in a post-processing step after unsupervised clustering
(Wassermann et al., 2010) or in the similarity metric of the clustering
algorithm itself (Tunç et al., 2014). The method that we present here
2

generalizes the approach of using individual anatomical regions in the
tract similarity metric, as it quantifies the similarity of streamlines and
clusters based on all their anatomical neighbors, and not just their
termination points.

In addition to inter-subject correspondence for group-wise tract
cluster analysis, the method that we present may be used to find corre-
sponding tract clusters between a subject’s hemispheres, which can be
useful for studying laterality. When focusing on predefined tracts of in-
terest one can readily compare the left and right counterparts of the same
tract (Garic et al., 2018; Propper et al., 2010; Wu et al., 2012). When
following an unsupervised approach, however, this becomes less
straightforward. Prior work computed the similarity of streamlines from
contralateral hemispheres by assuming that they are mirror images of
each other (O’Donnell et al., 2010) or performed a nonlinear registration
between hemispheres (Park et al., 2004).

In this work, we build upon our previously proposed method for
unsupervised clustering of streamlines based on anatomical similarity
(Siless et al., 2016, 2018). Previously, we evaluated this similarity for
clustering the whole-brain tractography streamlines of a single subject,
showing that it produces clusters more similar to WM bundles defined
manually by a human rater, even though it does not use any manually
labeled training data (Siless et al., 2018). Our similarity metric compares
the histograms of neighboring anatomical structures of two streamlines
for different directions. Here we take this approach a step further,
showing that, once this clustering has been performed in each individual
subject, an extended anatomical similarity metric with canonical di-
rections can be used to find corresponding clusters between individuals
and between hemispheres, without inter-subject or inter-hemispheric
registration. We evaluate the approach on data from the
MGH-Harvard-USC lifespan human connectome project (Fan et al.,
2016). We compare our method with a conventional similarity metric
based on Euclidean distances, which does rely on inter-subject registra-
tion, and show that our approach improves correspondence of tract
clusters across subjects aged 8–90. This work expands substantially on
the preliminary results presented in (Siless et al., 2017) and extends the
methodology to finding corresponding clusters between hemispheres, for
studies of symmetry. Our method is particularly relevant to the analysis
of populations with large morphological variability, such as healthy
subjects across the lifespan or subjects with neurodegenerative diseases
and healthy controls.

2. Methods

We propose an unsupervised method for finding corresponding WM
structures across subjects without the need for inter-subject registration.
Briefly, we group each subject’s whole-brain tractography streamlines
into clusters with our recently developed algorithm for hierarchical
clustering based on anatomical similarity, AnatomiCuts (Siless et al.,
2018). Diffusion measures for each cluster can be extracted in each
subject’s native space and compared between subjects without aligning
subjects to a template. In the following we define our measure of
anatomical similarity between two streamlines, as well as a more con-
ventional one based on Euclidean distance, which we use for comparison.
We then generalize these definitions to quantify similarity between two
clusters of streamlines that may come from different subjects or from
different hemispheres of the same subject. The procedures described
below are summarized in Fig. 1.
2.1. Streamline similarity metrics

Let f i ¼ ½xi1;…; xiN � be a streamline defined as a sequence of N points
xik 2 R3;k ¼ 1;…;N. A tractography dataset is a set ofM streamlines, F ¼
ff1;…; fMg. In the following, we assume that all streamlines have the
same number of points N. This can be enforced by downsampling, which
is performed commonly to make computation for clustering algorithms



Fig. 1. Algorithm overview: Whole-brain
tractography streamlines from each individ-
ual (a) are grouped into a fixed number of
clusters (b) with our anatomical similarity
metric, which utilizes a cortical and subcor-
tical segmentation from Freesurfer. Clusters
from different subjects are matched based on
their anatomical similarity (c), which does
not require inter-subject registration. Clus-
ters are also matched between each subject’s
hemispheres based on their anatomical sim-
ilarity, for symmetry analysis (d).
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tractable (Garyfallidis et al., 2012; Guevara et al., 2012; O’Donnell and
Westin, 2007; Siless et al., 2013, 2018; Visser et al., 2011; Wu et al.,
2012).

2.1.1. Euclidean similarity
This similarity metric has been used widely for tract clustering and

consists in the mean Euclidean distance between the corresponding
points of two streamlines f i and f j (Garyfallidis et al., 2012; Guevara
et al., 2012; Siless et al., 2013, 2018; Visser et al., 2011; Wu et al., 2012):
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The ordering of points is not consistent across streamlines, i.e., it is
possible for the first point of f i to be closer to the last point of f j and vice
versa. It is typical to account for this by also evaluating the similarity
between f i and the reversed f j. This leads to the following definition for
the similarity metric:
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where f rev
j ¼ ½xjN ;…;xj1�.
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2.1.2. Anatomical similarity
In (Siless et al., 2018) we introduced a streamline similarity metric

that makes use of a whole-brain cortical and subcortical segmentation,
SðxÞ, x 2 R3. Each point x on a streamline is associated with a set of
segmentation labels, Sðx þ dlðxÞvlÞ, l ¼ 1;…;P, where dlðxÞ is the mini-
mum d > 0 such that Sðx þ dvlÞ 6¼ SðxÞ. That is, for each point x, we find
the nearest neighboring segmentation labels in a set of directions vl, l ¼
1;…;P. Here we modify the definition of those directions, to ensure that
they are consistent across different subjects. Specifically, a neighborhood
of P ¼ 26 elements includes neighboring labels in the directions vl ¼
U � el, where U ≜ ½uLR uAP uSI�; e ≜ ½e1 e2 e3�T , e1;2;3 2 f�1;0; 1g and
we use v0 ¼ ½0;0; 0� to represent the segmentation label that the
streamline passes through. The columns of the matrix U are unit vectors
in the left-right, anterior-posterior, and superior-inferior direction. We
find these vectors as follows. We fit the mid-sagittal plane using the
FreeSurfer segmentation labels of the mid-sagittal section for the corpus
callosum and the third ventricle. We define uAP by projecting the line that
connects the center of mass of the anterior and posterior cingulate labels
onto the mid-sagittal plane. We define uSI as perpendicular to uAP within
the mid-sagittal plane, and uLR as perpendicular to that plane.

For each direction l ¼ 0;…;P, we compute a label histogramHil 2 RK ,
where K is the total number of labels in the anatomical segmentation.



Fig. 2. Age distribution of the 184 volunteers.
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This histogram represents the frequency with which different segmen-
tation labels are the l-th neighbor across all points on the i-th streamline.
The anatomical similarity measure between two streamlines f i and f j
expresses the joint probability of their anatomical neighborhoods:

w A

�
f i; f j

�
≜
��Li \ Lj

��XP
l¼0

〈Hil;Hjl〉; (2)

where 〈 �; � 〉 is the inner product, and Li, Lj are the sets of all labels found
to be neighbors of streamlines f i, f j. The normalization factor

��Li\ Lj
��,

which is the number of common neighbors between the two streamlines,
penalizes trivial streamlines with too few neighbors.

2.1.3. Inter-hemispheric anatomical similarity
Let f i and f j be streamlines in a subject’s left and right hemisphere,

respectively. Let SLðxÞ and SRðxÞ be anatomical segmentations of the left
and right hemisphere, such that each structure and its contralateral
counterpart (e.g., the left and right amygdala) have the same label ID. We
define the inter-hemispheric anatomical similarity of streamlines f i and f j
as:

wLR
A

�
f i; f j

�
≜
��Li \ Lj

��XP
l¼0

〈HL
il ;H

R
jl 〉; (3)

where the neighbor histograms HL
il;H

R
jl are computed for the segmenta-

tions SLðxÞ; SRðxÞ; respectively, and, if the l-th neighbor is defined by eLl ¼
½e1 e2 e3�T in the left hemisphere, then it is defined by eRl ¼
½�e1 e2 e3�T in the right.
2.2. Cluster similarity metrics

We define the Euclidean-distance similarity of two streamline clusters
as the Euclidean-distance similarity of their centroid streamlines. This
definition has been previously used in the literature (Guevara et al.,
2012; Ros et al., 2013). The centroid streamline is the closest streamline
to the average of all streamlines in a cluster. The centroids of two clusters
must be in a common space to compute this similarity metric. We define
the anatomical similarity of two streamline clusters by substituting the
cumulative histogram of anatomical neighbors of all streamlines in each
cluster in equation (2) or (3). Such histograms can be compared between
two clusters even if the clusters are not in the same space.
2.3. Matching clusters across subjects

Let C be the number of streamline clusters per subject. This number
can be fixed by stopping the hierarchical clustering of each subject’s
tractography dataset when the hierarchical tree has C leaf nodes. Given
the C � C matrix W ¼ fwmng, where wmn is the similarity of the m-th
cluster from one subject and the n-th cluster from another, our goal is to
find the permutation n1;…; nC of 1;…;C that maximizes

PC
m¼1wmnm , i.e.,

the matching of clusters between the two subjects that maximizes the
total cluster-to-cluster similarity. We solve the problem efficiently with
the Hungarian algorithm (Kuhn, 1955, 2009), which has been previously
applied to tract matching (Tunç et al., 2014). A subject is chosen at
random and the Hungarian algorithm is used to assign correspondence
between the clusters of that subject and those of every other subject,
based either on Euclidean distance or on anatomical similarity between
clusters.

Note that this implementation enforces one-to-one correspondence of
clusters between subjects, which may be a stringent requirement. Thus
we investigate the use of inter-subject consistency, quantified by the
coefficient of variation (CV), as a means for detecting outlier clusters
with inconsistent similarity across subjects. For the Euclidean-distance
similarity metric, these would be clusters with inconsistent alignment
4

across subjects in template space. For our anatomical similarity metric,
they would be clusters with inconsistent anatomical neighbors across
subjects. Inter-subject consistency has been used previously to threshold
the edges of brain networks for graph-theory analysis (Baum et al., 2018;
Roberts et al., 2017).

2.4. Matching clusters across hemispheres

In this case, the Hungarian algorithm is applied to the inter-
hemispheric anatomical similarities of clusters from a subject’s left and
right hemispheres. Before computing the similarity matrix, every
streamline that switches hemispheres is removed. Clusters with more
than 20% of streamlines switching hemispheres are excluded from this
computation entirely. There is no guarantee that the two hemispheres
will have the same number of clusters. This, however, is not a require-
ment for the Hungarian algorithm and any excess clusters of low inter-
hemispheric similarity will remain unmatched.

2.5. Data acquisition

In the following experiments, we use dMRI and structural MRI (sMRI)
data from 184 healthy subjects, scanned as part of the pilot MGH-
Harvard-USC Lifespan Human Connectome project (Fan et al., 2016).
Subjects’ ages range from 8 to 90 years as shown in Fig. 2. T1-weighted
images were acquired with 3D multi-echo magnetization prepared rapid
gradient echo (MEMPRAGE) (Van der Kouwe et al., 2008) at 1mm
isotropic resolution with an acquisition time under 4 min. Diffusion data
were acquired using a 2D spin echo echo-planar imaging (EPI) sequence
with a generalized autocalibrating partial parallel acquisition (GRAPPA)
factor of 3, combined with fast low angle excitation echo-planar tech-
nique with auto-calibration signal (FLEET-ACS) (Polimeni et al., 2016). A
simultaneous multi-slice (SMS) factor of 2 was used, allowing for faster
data acquisition. The dMRI acquisition scheme used two b-values, 2500s=
mm2 and 7500s=mm2, with 60 and 180 diffusion-encoding directions,
respectively. Data were acquired on the MGH 3T Skyra Connectom
scanner, featuring a maximum gradient strength of 300mT=m (Setsom-
pop et al., 2013). The T1-weighted data were processed in FreeSurfer to
extract cortical parcellations and subcortical segmentations (Fischl et al.,
2002, 2004). The dMRI data were corrected for eddy-current (Andersson
and Sotiropoulos, 2016) and magnetic susceptibility artifacts (Andersson
et al., 2003).

2.6. Data analysis

We reconstructed orientation distribution functions from the dMRI
data using the generalized q-sampling imaging model (Yeh et al., 2010)
and performed whole-brain, deterministic tractography using DSI Studio
(Yeh et al., 2013). We seeded every voxel in the segmentation map
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computed by FreeSurfer. Following (Siless et al., 2018) we focused only
on long-range connections, as analysis methods can be better optimized
for long- and short-range connections separately (Guevara et al., 2012,
2017; Rom�an et al., 2017; Zhang et al., 2014). We obtained a large
number of long-range connections while keeping computation tractable
by generating a total of 500,000 streamlines per subject and then
excluding any streamlines shorter than 55 mm. This yielded between
100,000 and 150,000 streamlines per subject. For reference, (Rom�an
et al., 2017) defined short connection streamlines as shorter than 80mm,
thus our criterion was less stringent. We downsampled all streamlines to
N ¼ 10 equispaced points. Previously we found that increasing N did not
have enough of an impact on the clustering to justify the increased
computational cost (Siless et al., 2018). The dMRI data were registered to
the individual’s T1 volume by applying a boundary-based, affine regis-
tration (Greve and Fischl, 2009) to the b ¼ 0 volumes.

We clustered each subject’s streamlines using the normalized cuts
algorithm, with our anatomical similarity and with the conventional,
Euclidean-distance similarity, as in (Siless et al., 2018). For the
anatomical similarity, segmentation labels came from each subject’s
cortical, subcortical and white-matter segmentations computed by
Freesurfer. The number of anatomical neighbors was set to P ¼ 26, as we
have previously found this to perform better than smaller neighborhoods
(Siless et al., 2018). In our previous evaluations, we have found that 200
clusters outperformed smaller numbers of clusters when comparing the
overlap of tract clusters with a set of WM bundles that were defined
manually by a human rater (Siless et al., 2018). Hence, we obtained 200
clusters per subject with each method. We then used each of the two
similarity metrics to find one-to-one correspondence of clusters between
subjects with the Hungarian algorithm.

Although our anatomical similarity metric does not require inter-
subject registration to find inter-subject cluster correspondence, the
conventional, Euclidean-distance similarity metrics do. Clusters from
different subjects must be mapped to a common template space before
Euclidean distances between them can be computed. For this purpose, we
performed a combined volume and surface (CVS) registration (Postelnicu
et al., 2009) between each subject’s T1 and a template T1 volume. We
opted to use a single-subject template, i.e., the T1 of a randomly selected
subject from the young adult cohort (age 25). We mapped each in-
dividual’s clusters to this template by composing the affine registration
from individual dMRI to individual T1 space and the nonlinear regis-
tration from individual T1 to template T1 space. We compared this to a
more standard nonlinear inter-subject registration approach for dMRI
data. We stress once again that this registration is required only for
computing the Euclidean-distance similarity metric, and not our pro-
posed anatomical similarity metric.

Finally, we fit tensors to the b ¼ 2500 dMRI data of each individual
and computed fractional anisotropy (FA) and mean/radial/axial diffu-
sivity (MD/RD/AD) maps from the tensors.
2.7. Evaluation metrics

2.7.1. Inter-subject overlap
For each cluster, we generated a binary volume with values of 1 in the

voxels that intersected the streamlines of the cluster and 0 elsewhere. We
quantified the overlap for a pair of corresponding clusters from two
subjects by computing their Dice coefficient (Dice, 1945; Sørensen,

1948), which is defined as 2jA\Bj
jAj2þjBj2 for two sets A and B. For each pair of

subjects, we averaged the Dice coefficients of all 200 corresponding
clusters. We investigated how the overlap of two subjects’ clusters
changed as the age difference between subjects increased. Clusters that
had been generated and matched based on anatomical similarity had to
be mapped to the template space to compute their inter-subject overlap.
Clusters that had been generated and matched between subjects based on
Euclidean distance were already mapped to template space.

Previously, CVS registration was shown to perform better than other
5

nonlinear methods at aligning WM bundles between subjects in a cohort
with a smaller age range than ours (Z€ollei et al., 2010). For comparison,
we used FSL tools (Jenkinson et al., 2002, 2012) to perform nonlinear
registration of each subject’s FA map to the FMRIB FA template. We
compared the image difference between target and source FA images for
the two inter-subject registration methods.

2.7.2. Inter-subject consistency
We quantified the variability of corresponding clusters across subjects

by the coefficient of variation (CV), σμ, where σ is the standard deviation

and μ is the mean. We first computed the CVs of the Dice coefficients of
corresponding clusters between pairs of subjects.

We also computed histograms of the CV of the anatomical and
Euclidean-distance similarities, for different numbers of clusters per
subject. The goal of this evaluation was to understand how the number of
clusters can impact the inter-subject consistency of corresponding clus-
ters, and whether the latter can be used for outlier exclusion.

2.7.3. Inter-hemispheric vs. inter-subject similarity
We expected anatomical similarity to be comparable between corre-

sponding clusters in different hemispheres and in different subjects, as it
is based on histograms of neighboring anatomical structures, and the
same structures exist in both hemispheres and all subjects. Thus, we
compared the mean anatomical similarity between corresponding clus-
ters obtained with the inter-hemispheric (intra-subject) or the inter-
subject Hungarian algorithm. We evaluated this for different numbers
of clusters.

2.7.4. Fitting age-related changes of diffusion measures
We computed the average FA, MD, RD and AD for each cluster in the

individual dMRI space. After establishing cluster correspondence across
subjects, we used these measures for a cross-sectional study of micro-
structure changes in each of the 200 clusters across the lifespan. We fit
the models that are most commonly used to study age-related WM
changes in the literature: linear, quadratic and Poisson (exponential).

- Linear: y ¼ β0 þ β1 � tþ β2 � s
- Quadratic: y ¼ β0 þ β1 � tþ β2 � t2 þ β3 � s
- Poisson: y ¼ β0 þ β1 � t � e�β2 � t þ β3 � s

Here y is a microstructural measure (FA/MD/RD/AD), t is age, and s is
a discrete variable of gender. We performed least-squares estimation of
βi. We used the residual errors to compare the goodness-of-fit for clusters
generated with each of the similarity metrics.

2.7.5. Computation time
The computational complexity of the Hungarian algorithm is OðC3Þ

(Jonker and Volgenant, 1987). The complexity of computing the simi-
larity matrix is OðCDÞ, where D is the complexity of the similarity metric,
which is OðNÞ and OðNPÞ for the Euclidean and anatomical similarity,
respectively. However, the Euclidean-distance similarity requires a
registration step whose complexity is variable and not accounted for in
the above. As explained in previous sections, our experiments used C ¼
200;N ¼ 10;P ¼ 26.

3. Results

3.1. Inter-subject overlap

Fig. 3 shows the overlap (Dice coefficient) of corresponding clusters
between pairs of subjects, as a function of the age difference between the
subjects. Fig. 3(a) plots the average overlap over all 200 clusters, for
clusters generated and matched across subjects with the anatomical and
the Euclidean-distance similarity metric. Fig. 3(b) plots the percent
change between the former and the latter. Our anatomical similarity
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metric yielded clusters with greater inter-subject overlap than the con-
ventional, Euclidean-distance similarity metric, and it also led to less
pronounced deterioration of the overlap as the age difference between
subjects increased (p < 0:0001 based on a two-sided T-test on the linear
regression of percent improvement vs. age difference). The average
improvement in inter-subject cluster overlap afforded by using the
anatomical over the Euclidean-distance similarity metric ranged from
31% for subjects of the same age to 38% for subjects who were 80 years
apart in age.

In Fig. S1 we show that inter-subject mean squared differences be-
tween registered FA images were smaller with CVS registration to a
single-subject T1 template composed with the mapping between T1 and
diffusion space, than nonlinear registration to an average FA template.
Hence we proceed with using CVS registration for the Euclidean-distance
similarity in all remaining analyses.

3.2. Inter-subject consistency

Fig. 4 shows the CV of the Dice coefficients of corresponding clusters
between pairs of subjects. We evaluated the effect of the subject that is
chosen at random as the target for the Hungarian algorithm by repeating
the CV calculation for different target subjects. The plot shows the
average and standard error of these CV values. The inter-subject overlap
had lower CV for clusters produced with the anatomical than the
Euclidean-distance similarity metric, with few outliers. The choice of
target subject had a negligible effect on this outcome. Hence we proceed
with a single, randomly selected target subject for all remaining results.

We show histograms of the CV of the similarities between corre-
sponding clusters, for different numbers of clusters, in Fig. 5. For all
numbers of clusters, the distribution of cluster CVs for the Euclidean-
distance similarity did not allow the detection of outliers. Histograms
for the anatomical similarity had a few easily discernible outlier clusters
of high CV. In Fig. 6 we show the clusters with the highest and lowest CV
of similarities. The heat maps are binary images of corresponding clusters
from all subjects in an age group, summed in template space. For the
anatomical similarity, the cluster with lowest CV shows a portion of the
inferior longitudinal fasciculus, and the cluster with highest CV shows
the corticospinal tract that decussated for some age groups but not
others. This illustrates a clear differentiation, in terms of anatomical
consistency, between the low-CV and high-CV clusters and confirms that
it would be reasonable to exclude the latter as outliers. For the Euclidean-
distance similarity metric, the cluster with lowest CV contains a portion
of the thalamic radiation and the cluster with highest CV mixes portions
of the inferior longitudinal fasciculus and the corpus callosum.
Fig. 3. Inter-subject overlap. For each pair of subjects we average the Dice coeffici
corresponding clusters for each pair of subjects, for clusters obtained with the anatom
between them (b), as a function of the age difference between subjects.
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3.3. Inter-hemispheric vs. inter-subject similarity

Fig. 7 shows the mean anatomical similarity between clusters, when
the Hungarian algorithm is used to find inter-hemispheric and inter-
subject cluster correspondence. Anatomical similarity for correspond-
ing clusters between hemispheres and subjects is comparable. Fig. S2
shows the effect of the percentage of streamlines crossing hemispheres
that clusters were allowed to have to be included in this analysis. We did
not find this to affect the results noticeably. In Fig. 8 we show examples of
clusters that were found to correspond between hemispheres. For
display, individual tract clusters were transformed to binary images,
summed across subjects by age group in template space and converted to
isosurfaces at 10% of the maximum number of subjects.
3.4. Fitting age-related changes of diffusion measures

Fig. 9 shows the residual errors of the Poisson, quadratic and linear
fits of FA, MD, AD, and RD vs. age, averaged over all 200 clusters. The
anatomical similarity metric led to lower residual errors for all three
models and all four diffusion measures. As the Poisson model had the
lowest residual errors, we show examples of Poisson curves for some
clusters of interest in Figs. 10 and 11. Clusters in Fig. 10 were selected
based on their anatomical similarity to some of the manually labeled
tracts from (Siless et al., 2018), and clusters in Fig. 11 were not included
in that manually labeled set. Consistent with the literature,
inter-hemispheric connections, such as the forceps major of the corpus
callosum, show little to no changes in FA after age 8 (Clayden et al., 2012;
Lebel et al., 2008; Pohl et al., 2016), while MD continues to decrease until
early adulthood (Lebel et al., 2008). The superior longitudinal fasciculus
develops until late adolescence, with FA increasing and MD decreasing
until adulthood (Lebel et al., 2008; Pohl et al., 2016). This increase in FA
is only seen with the anatomical similarity metric. The cingulum bundle
shows the greatest changes during development, with FA increasing
substantially until adulthood (Clayden et al., 2012; Lebel et al., 2008;
Pohl et al., 2016). This is better captured by clusters produced with the
anatomical similarity measure. In Fig. 11 we show Poisson curves of
structures that have been reported on less frequently in the literature. A
mid-component of the corpus callosum shows subtle increase of FA into
adulthood (Pohl et al., 2016; Tamnes et al., 2010) but large decrease of
MD. The FA trend is only seen in the clusters produced with the
anatomical similarity metric. This subtle change would be missed if FA
were averaged over the entire corpus callosum, instead of decomposing it
into smaller clusters. Another structure that is analyzed less frequently is
the frontal aslant tract, where only clusters obtained with the anatomical
similarity metric show an FA increase in both hemispheres until early
adulthood (Garic et al., 2018). Clusters produced with the
ents of the 200 corresponding clusters. We plot the average Dice coefficient of
ical and the Euclidean-distance similarity metric (a) and the percent difference



Fig. 4. Coefficient of variation of the overlap of corresponding clusters across subjects for each similarity metric. Average values and standard error bars are plotted
across different subjects chosen as the target for the Hungarian algorithm.

Fig. 5. Histograms of the CV of anatomical (top row) and Euclidean distance (bottom row) inter-subject similarities. This is shown for different numbers of clusters
per subject.

Fig. 6. Examples of clusters with low (top 2 rows) and high (bottom 2 rows) CV of inter-subject similarity. Images show heat maps of binary cluster images, summed
across subjects from each age group in template space.

V. Siless et al. NeuroImage 214 (2020) 116703
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Fig. 7. Mean anatomical similarity of corresponding clusters between subjects and between hemispheres. This is shown for the hierarchical tree pruned at 50, 100,
150 and 200 clusters. Similarity values are normalized by the maximum value over all for display.

Fig. 8. Inter-hemispheric cluster correspondence shown in alternate rows. We show isosurfaces color-coded by age group: pink (8–11), yellow (12–14), orange
(15–17), red (18–28), purple (50–65), and blue (66–90).

V. Siless et al. NeuroImage 214 (2020) 116703
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Fig. 9. Residual errors of Poisson, quadratic, and linear fits of the average FA, MD, AD, and RD vs. age, averaged over 200 clusters obtained with the anatomical (blue)
and Euclidean-distance (orange) similarity metric. The bars represent standard deviation.
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Euclidean-distance similarity metric show no development in the right
hemisphere.

Fig. S3 shows residual error plots for smaller numbers of clusters, i.e.,
when the hierarchical clustering tree was pruned at 50, 100 or 150
clusters. In all cases, clusters produced with the anatomical similarity
metric yielded lower residual errors than those produced with the
Euclidean-distance similarity metric. Fig. S4 shows Poisson, quadratic,
and linear fit of diffusion measures vs. age for each individual cluster, at
the 200-cluster level. These confirm that, overall, our data are able to
capture expected lifespan trends, with FA increasing during development
and decreasing during aging, while MD/AD/RD follow opposite trends.
Fig. S5 shows the same for different numbers of total clusters, only for the
Poisson model.

3.5. Computation time

Computation time for finding corresponding clusters across subjects,
when each subject’s hierarchical clustering tree is pruned at different
levels, is shown in Table 1 for the anatomical and the Euclidean-distance
similarity metric. Times are reported for a quadcore Xeon 5472 with 3.0
GHz CPUs and 7 GB of RAM.
9

3.6. Visual evaluation

For visual evaluation, we show corresponding clusters obtained with
the anatomical and Euclidean-distance similarity metrics in two in-
dividuals from each age group in Figs. S6, S7, S8. The clusters shown in
the three figures represent portions of a long-range (corticospinal tract,
S6), a short-range (frontal aslant tract, S7) and an inter-hemispheric
(corpus callosum, Fig. S8) connection.

Fig. S9 shows clusters with high anatomical similarity with some of
the manually labeled tracts from (Siless et al., 2018). Here clusters were
transformed to binary images, summed over subjects in each age group in
template space, and converted to isosurfaces at 10% of the maximum
number of subjects. These clusters show portions of various known tracts.

4. Discussion

We present a method for comparing whole-brain tract clusters across
subjects without the need for inter-subject registration. It relies on an
extended version of our recently proposed, anatomical similarity metric,
which groups tractography streamlines based on the similarity of their
anatomical neighbors, rather than their distance in Euclidean space.



Fig. 10. Poisson curves fit to average FA/MD/AD/RD of clusters obtained with the anatomical (blue) and the Euclidean-distance (orange) similarity metric. Results
are shown for the three clusters of the left, where isosurfaces are color-coded by age group: pink (8–11), yellow (12–14), orange (15–17), red (18–28), purple (50–65),
and blue (66–90). The clusters represent portions of the forceps major of the corpus callosum (top), left arcuate fasciculus (middle), and left cingulum bundle (bottom).
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Previously, we used this similarity metric to cluster whole-brain trac-
tography streamlines in an individual subject, and evaluated it in a small
group of young to middle-aged adults (Siless et al., 2018). Here we
extend this approach to across-subject analysis, and evaluate it on a large
cohort of subjects aged 8–90. We show that our anatomical similarity
metric can be extended to match clusters across subjects without
co-registering them. It leads to much greater overlap of corresponding
clusters across subjects, in comparison to a conventional similarity metric
based on Euclidean distance, which relies on accurate inter-subject
registration. The improvement ranges from 31% for subjects of the
same age to 38% for subjects who are 80 years apart in age (Fig. 3). The
improved inter-subject consistency is also demonstrated by lower CV of
cluster similarities across subjects (Fig. 5) and lower residual error in the
fitting of lifespan trajectories of microstructural measures (Fig. 9). Our
anatomical similarity metric can also be used to match clusters between
hemispheres, without the need for inter-hemispheric registration (Fig. 8).
This could be used for unsupervised analysis of the laterality of WM
bundles, which is observed in many neurological disorders.

Unsupervised streamline tractography may produce artifactual bun-
dles, e.g., a truncated section of a trueWM pathway or merged sections of
different pathways, in a manner that is inconsistent across subjects.
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Hence the requirement for one-to-one correspondence of clusters be-
tween subjects may be too stringent. One way to relax this requirement is
by detecting clusters that are outliers in terms of inter-subject consis-
tency. We found that the anatomical similarity metric produced a few
easily discernible outliers of low consistency (high CV) (Figs. 4 and 5).
These outlier clusters were predominantly due to tractography artifacts
(Fig. 6), hence it would be appropriate to exclude them from a population
study. Note, however, that the reverse is not necessarily true, i.e., high
inter-subject consistency does not guarantee anatomical validity. It is
possible for a certain tractography error to occur consistently across
subjects. This is a limitation of unsupervised tractography that could only
be remedied by the introduction of prior anatomical information.

It is important to note that unsupervised clustering of whole-brain
tractography is a purely data-driven analysis that is not optimized for
reconstructing specific named tracts from the neuroanatomical literature
(e.g., the arcuate fasciculus, uncinate fasciculus, etc.). Supervised ap-
proaches, which incorporate prior information on such tracts, are spe-
cifically designed for this task. Such approaches may use ROI-based rules
(Clayden et al., 2008; De Groot et al., 2013; Yeatman et al., 2012; Zhang
et al., 2008) or cluster similarity metrics (Garyfallidis et al., 2018; Gue-
vara et al., 2012; Jin et al., 2014; O’Donnell and Westin, 2007; Ros et al.,



Fig. 11. Poisson curves fit to average FA/MD/AD/RD of clusters obtained with the anatomical (blue) and the Euclidean-distance (orange) similarity metric. Results
are shown for the three clusters on the left, where isosurfaces are color-coded by age group: pink (8–11), yellow (12–14), orange (15–17), red (18–28), purple (50–65),
and blue (66–90). The clusters represent portions of the corpus callosum (top), right frontal aslant tract (middle), left frontal aslant tract (bottom).

Table 1
Computation times for finding inter-subject cluster correspondence.

#clusters Anatomical Euclidean

200 6:37 min 4:38 min
150 6:11 min 4:27 min
100 5:90 min 4:20 min
50 4:44 min 4:18 min
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2013; Zhang et al., 2018; Ziyan et al., 2009) to identify named tracts after
performing tractography; may introduce prior anatomical information in
the tractography itself (Yendiki et al., 2011); or may forgo tractography
entirely, performing volumetric segmentation instead (Bazin et al., 2011;
Hagler et al., 2009; Ratnarajah and Qiu, 2014; Wasserthal et al., 2018).
The named tracts reconstructed by these supervised algorithms represent
the main highways of the brain. However, it is known from anatomical
studies that these large pathways are not monolithic structures, but
instead comprise many smaller bundles, each projecting to different
anatomical regions (Lehman et al., 2011). These sub-bundles may be
topographically organized within the large white-matter pathways, and
disease effects may be specific to certain sub-bundles (Safadi et al.,
2018). Therefore, statistical power to detect these effects may be reduced
11
when diffusion measures are averaged over a large pathway. As a result,
it is useful to have an anatomically meaningful way of subdividing
white-matter bundles that goes beyond the large, named tracts. The
unsupervised, hierarchical clustering based on anatomical similarity that
we have presented here is suitable for studying the entire white matter,
and can divide it into arbitrary small tract clusters, within the limits
posed by the granularity of the anatomical segmentation. We have shown
previously that our anatomical similarity metric leads to clusters that
resemble manual dissections of named tracts more than the clusters
produced by the conventional, Euclidean-distance similarity (Siless et al.,
2018). Encouragingly, the unsupervised approach proposed here yielded
several findings on WM microstructural development in agreement with
prior studies that had used supervised tractography to study specific
pathways.

Clusters that were generated and matched across subjects with our
anatomical similarity metric yielded results consistent with previous
findings on the development of the forceps major of the corpus callosum,
the arcuate fasciculus, and the cingulum bundle (Clayden et al., 2012;
Lebel et al., 2008; Pohl et al., 2016). Clusters produced by a conventional
Euclidean-distance similarity metric do not show the expected increase in
FA of the arcuate or as large an increase in FA of the cingulum into late
adulthood. While the corpus callosum as a whole shows little
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development of FA into adulthood (Pohl et al., 2016), subdividing the
corpus callosum based on anatomical similarity resulted in a mid-callosal
cluster whose FA showed late increases. This finding would be missed if
clustering were preformed based on Euclidean similarity or if FA were
averaged in the entire corpus callosum. The frontal aslant tract is
believed to have functional lateralization (Catani et al., 2013; Dick et al.,
2019) but its developmental trajectory in terms of FA does not differ
between hemispheres (Broce et al., 2015; Garic et al., 2018). In agree-
ment with this, clustering of anatomical similarity shows an increase in
FA for both hemispheres until early adulthood. However, clustering
based on Euclidean similarity shows no development on the right
hemisphere.

We fit three commonly used models for WM microstructural changes
through the lifespan: linear, quadratic, and Poisson. Clusters that were
generated and matched across subjects based on our anatomical simi-
larity metric exhibited lower residual errors than clusters produced with
a conventional, Euclidean-distance similarity metric, for all models
(Fig. 9) and all levels of granularity of the hierarchical clustering
(Fig. S3). The improved fitting of lifespan trajectories is likely to stem
from the higher inter-subject consistency of clusters produced with our
anatomical similarity metric (Fig. 4). Overall, we found lower residual
errors with the Poisson model than the quadratic and linear ones. In the
future, it may be worth investigating more flexible approaches to
modeling lifespan trajectories, such as generalized additive models. It is
worth noting that the dataset used in this study lacks subjects of ages
between 30 and 50. Although the majority of development and aging is
hypothesized to happen outside that range, this may be a limitation of
this study. Despite this gap, all models fit here show the expected trends
in anisotropy and diffusivity changes across the lifespan (Figs. S4 and
S5). Given that in our previous report (Siless et al., 2018) we evaluated
our methodology on data from subjects who were predominantly in the
30–50 age range, we do not expect that adding this age group here would
alter our conclusions on the benefits of our anatomical similarity metric
over more conventional metrics for unsupervised clustering.

5. Conclusion

This work builds upon our previously proposed method for tract
clustering based on anatomical similarity, AnatomiCuts, and extends it
for across-subject analyses. Specifically, we use our anatomical similarity
metric to find corresponding clusters across subjects or hemispheres
without the need for registration. We evaluate this approach on a large
cohort of subjects aged 8–90 and we show that it yields clusters that are
more consistent across subjects than those produced by a conventional,
Euclidean-distance similarity metric. The improvement in inter-subject
overlap of clusters increases with the age difference between subjects.
Furthermore, our approach leads to lower residual errors when fitting
several commonly used models for age-related changes in WM micro-
structure across the lifespan. We expect this method to facilitate
exploratory analyses of WM microstructure in populations with large
inter-subject variability.
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